The small RNA SgrS: roles in metabolism and pathogenesis of enteric bacteria

نویسندگان

  • Maksym Bobrovskyy
  • Carin K. Vanderpool
چکیده

Bacteria adapt to ever-changing habitats through specific responses to internal and external stimuli that result in changes in gene regulation and metabolism. One internal metabolic cue affecting such changes in Escherichia coli and related enteric species is cytoplasmic accumulation of phosphorylated sugars such as glucose-6-phosphate or the non-metabolizable analog α-methylglucoside-6-phosphate. This "glucose-phosphate stress" triggers a dedicated stress response in γ-proteobacteria including several enteric pathogens. The major effector of this stress response is a small RNA (sRNA), SgrS. In E. coli and Salmonella, SgrS regulates numerous mRNA targets via base pairing interactions that result in alterations in mRNA translation and stability. Regulation of target mRNAs allows cells to reduce import of additional sugars and increase sugar efflux. SgrS is an unusual sRNA in that it also encodes a small protein, SgrT, which inhibits activity of the major glucose transporter. The two functions of SgrS, base pairing and production of SgrT, reduce accumulation of phosphorylated sugars and thereby relieve stress and promote growth. Examination of SgrS homologs in many enteric species suggests that SgrS has evolved to regulate distinct targets in different organisms. For example, in Salmonella, SgrS base pairs with sopD mRNA and represses production of the encoded effector protein, suggesting that SgrS may have a specific role in the pathogenesis of some γ-proteobacteria. In this review, we outline molecular mechanisms involved in SgrS regulation of its target mRNAs. We also discuss the response to glucose-phosphate stress in terms of its impact on metabolism, growth physiology, and pathogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physiological consequences of multiple-target regulation by the small RNA SgrS in Escherichia coli.

Cells use complex mechanisms to regulate glucose transport and metabolism to achieve optimal energy and biomass production while avoiding accumulation of toxic metabolites. Glucose transport and glycolytic metabolism carry the risk of the buildup of phosphosugars, which can inhibit growth at high concentrations. Many enteric bacteria cope with phosphosugar accumulation and associated stress (i....

متن کامل

Occurrence of Beta2 toxigenic Clostridium perfringens isolates with different toxin types in Iran

Clostridium perfringens is an important cause of enteric diseases in both human and animals. The bacteria produce several toxins which play key roles in the pathogenesis of diseases and are classified into five toxin types, on the basis of the differential production of Alpha, Beta, Epsilon and Iota toxins. In this study a single PCR assay was developed and used for detection of cpb2 gene to id...

متن کامل

Homologs of the small RNA SgrS are broadly distributed in enteric bacteria but have diverged in size and sequence

Sugar phosphate stress in Escherichia coli is sensed and managed by the transcriptional regulator SgrR and the small RNA (sRNA) SgrS. SgrS is a dual function RNA that performs base pairing-dependent regulation of mRNA targets and encodes a small protein, SgrT. Homologs of SgrR were analyzed for gene synteny and inter-homolog identity to identify those that are likely to be functionally analogou...

متن کامل

P 64: Micro-Rna Disorder and Multiple Sclerosis

Noncoding ribonucleic acids micro-RNA is involved in the regulation of gene expression have major roles in the post-transcriptional level. A micro-RNA alone several causes down regulation of mRNA transcript of the target. Thus, small changes in the expression of a micro RNA may lead to significant changes in gene expression are different. Micro- RNA as key regulators of immune cell lineage diff...

متن کامل

Extracellular Vesicles Derived from Gastrointestinal Microbiota: A New Approach to Clinical Studies

Extracellular vesicles, naturally released from all cell types including bacteria, are of great importance in medical microbiology due to transporting a variety of biomaterials, enzymes, and virulence factors, regulating immunity, and having roles in colonization and initiation of signaling pathways. These vesicles are also secreted from microbiota in the gastrointestinal tract and affect the h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014